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Abstract

In the view of structure-borne sound, the structural wave and power flow characteristics of infinite thin cylindrical in

vacuo shell with a circumferential surface crack are investigated. In this paper, the equivalent distributed line spring is

designed to model the surface crack in the shell. The local compliance matrix due to the presence of the crack is deduced

from fracture mechanics and three modes of the crack stress intensity factors and their coupling are considered in the local

compliance matrix. The vibration of the thin shell is described by the Flügge shell equations. Under the excitation of radial

harmonic line force, the input power flow and transmitted power flow of uncracked and cracked shells are obtained. The

results show that the vibrational power flow of cracked shell changes substantially due to the presence of crack, and the

change is strongly related to the depth and location of crack. Contours of input power flow at different frequencies are

constructed to identify the location and depth of the crack. It is revealed that the power flow in the cylindrical shell

structures can be used as an alternative defect information carrier. This research provides theoretical basis for the crack

detection by measuring the vibrational power flow in cracked shell structures.

r 2006 Published by Elsevier Ltd.
1. Introduction

Cracks are often found in the engineering structures due to different causes, which present a serious threat
to the performance of structures. For this reason, early detection and localization of the cracks have been the
subject of many investigators for decades and a number of damage-detection methods have been developed.
The conventional non-destructive evaluation methods, such as ultrasonic testing, X-ray, magnetic field
methods, etc. are usually costly and time consuming for the large-scale structure. Generally, a crack in a
structure introduces a local flexibility which usually changes the dynamic behavior of the structure, and the
usage of such changes could be a possible way to detect the crack. Therefore, the vibration-based crack
identification methods are utilized widely in recent years. Based on this principle, many crack detection
methods have been developed: frequency change, mode shape change, flexibility change, impedance method,
method based on wavelet, neural network method, etc. Doebling et al. [1] presented a review of the state of the
art of vibration-based damage detection methods.
ee front matter r 2006 Published by Elsevier Ltd.
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In recent literatures, most of the researches for crack detection were concentrated on the simple beam
structures and plate structures [2]. In the beam or plate structures, many methods are used to model the crack,
such as the short beam model, finite element method and rotational spring model, and so on. Gounaris and
Dimarogonas [3] developed a finite element for a cracked prismatic beam for structural analysis based on the
compliance matrix for the crack. Chaudhari and Maiti [4] modeled the crack section by a rotational spring to
analyze the transverse vibrations of a geometrically segmented slender beam and identify the crack in the
beam. The line spring model was also used to determine the local flexibility in the research of the cracked plate
structures [5–7]. From kinds of literatures it can be found that the local spring model is by far the most
commonly used model in dynamic analysis of cracked beams.

However, the damage detection researches on shell structures received scant attention from literatures,
perhaps due to the complexity of the cylindrical shell structures. Srinivasan and Kot [8] used the modal strain
energy as the indicator of damage in a cylindrical shell and proposed the damage index algorithm to detect the
damage. Nikpour [9] analyzed the influence of a circumferential crack upon the vibration characteristics of a
thin laminated anisotropic cylindrical shell and the case of axisymmetrical vibration demonstrated the modal
frequency technique to estimate the position and depth of the crack. Marwala [10] presented a committee of
neural networks technique, which employed frequency response functions, modal properties (natural
frequencies and mode shapes), and wavelet transform data simultaneously to identify four types of faults in a
cylindrical shell and this committee approach gave results that generally have a lower mean square error
(MSE) than the average MSE of the individual methods. Roytman and Titova [11] provided an analytical
approach to determining the dynamic characteristics of a cylindrical shell with closing cracks, and the cycle of
vibrations was assumed to be subdivided into two parts and the problem was solved in a piecewise linear with
different frequencies and amplitudes at each vibrations cycle interval. From the above discussions, it is
apparent that investigations on crack detection of shell structures are not enough and some new methods
should be proposed to detect the crack in the cylindrical shell structures.

In recent years, the structure-borne sound analysis and control of flexible structures such as cabins of marine-
structures and aeronautical crafts are becoming an important topic. The usage of vibrational power flow in the
problem of this type is very valuable. Generally, the vibration of a structure can be regarded as a typical example
of structural wave propagation. The presence of the crack in the structure will in some way change the motion of
the wave. Consequently, the changes of the wave will in turn influence the power flow characteristics in the
structure. Based on this, the research on the power flow characteristics of the cracked structures will be of great
value for crack detection. Li et al. [12,13] firstly researched the power flow of the cracked periodic beam
structures and cracked infinite beam structures. The relations between the vibrational power flow and the
characteristics of the crack (location and depth) were obtained to detect the crack. Li et al. [14] again investigated
the power flow characteristics of the circular plate structure with peripheral surface crack.

The objective of this paper is to investigate the power flow characteristics of the infinite thin cylindrical in
vacuo shell with a circumferential surface crack The part-through cracked section is represented as a
continuous line spring. In consideration of the three modes of stress intensity factors, the local compliance
matrix is obtained from fracture mechanics to construct the boundary condition in the vicinity of the crack.
Using the Flügge shell equations, the wave propagation and power flow characteristics are determined.
Compared with the intact shell, changes in input and transmitted power flows with respect to the crack
location and crack depth are obtained. At last the possible crack identification procedure is proposed.
2. Vibration of uncracked cylindrical shell

Consider an infinite uncracked thin-walled cylindrical shell, the coordinate system and the modal shapes are
shown in Fig. 1. The free vibration motion of the thin shell can be described by the Flügge shell equations as [15]

uxx þ
1þ m
2

uxy þ
1� m
2

vxy þ mwx þ K
1� m
2

uyy � wxxx þ
1� m
2

wxyy

� �
� rR2ð1� m2Þ=Eutt ¼ 0,
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Fig. 1. Coordinate system and mode shapes of cylindrical shell.
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1þ m
2

uxy þ vyy þ
1� m
2

vxx þ wy þ K
3ð1� mÞ

2
vxx �

3� m
2

wxxy

� �
� rR2ð1� m2Þ=Evtt ¼ 0,

K
1� m
2

uxyy � uxxx �
3� m
2

vxxy þ wxxxx þ 2wxxyy þ wyyyy þ 2wyy þ w

� �
þ mux þ vy þ wþ rR2ð1� m2Þ=Ewtt ¼ 0, ð1Þ

where u, v and w are shell displacements in the x, y and r directions, respectively, R is the shell mean radius, h is
the shell thickness, K is a thickness factor, K ¼ h2/12R2, E is the Young’s modulus, m is the Poisson ratio, r is the
density of the shell material, ( )x ¼ R(q( )/qx), ( )y ¼ q( )/qy, utt ¼ q2u/qt2.

Solutions of Eq. (1) can be expressed in the following forms as [16]

u ¼
P1

n¼0un ¼
P1

n¼0

Pm
s¼1Uns expð�iknsxþ iotÞ cos ðnyÞ

v ¼
P1

n¼0vn ¼
P1

n¼0

P4
s¼1V ns expð�iknsxþ iotÞ sin ðnyÞ

w ¼
P1

n¼0wn ¼
P1

n¼0

Pm
s¼1W ns expð�iknsxþ iotÞ cos ðnyÞ

9>=
>;, (2)

where kns is the axial wavenumber and o the driving frequency, n the circumferential modal number, s denotes
a particular branch of the dispersion curves, m ¼ 3 for n ¼ 0 and m ¼ 4 for n40. Uns, Vns and Wns the wave
amplitudes in the x, y and r directions, respectively.

Substitution of Eq. (2) into the shell Eq. (1) results in the equations of motion of the shell in symmetric
matrix form

½L3�3�½Uns V ns W ns�
T ¼ ½0 0 0�T, (3)

where

½L3�3� ¼

�l2 þ a0 b0l c0l3 þ d 0l

b0l e0l2 þ f 0 g0l2 þ h0

c0l3 þ d 0l g0l2 þ h0 j0 þ k0l2 þ l0l4

2
64

3
75,

a0 ¼ � ð1� mÞð1þ KÞn2=2þ O2; b0 ¼ ð1þ mÞn=2; c0 ¼ �K,

d 0 ¼ m� Kð1� mÞn2=2; e0 ¼ �ð1� mÞð1þ 3KÞ=2; f 0 ¼ n2 � O2,

g0 ¼ � ð3� mÞKn=2; h0 ¼ n; j0 ¼ 1þ Kðn2 � 1Þ2 � O2,

k0 ¼ � 2n2K ; l0 ¼ K .

l ¼ knsR is the non-dimensional axial wavenumber, O ¼ oR/cL is the non-dimensional driving frequency,
and cL is the extensional phase speed of the shell material.

Expansion of the determinant of the amplitude coefficient in Eq. (3) may provide the system characteristic
equation, which is a bi-fourth polynomial equation about l. From the polynomial equation, four pairs of
wavenumbers can be obtained and can be written in the following form:

li ¼ di þ iri; i ¼ 1; 2; . . . ; 8. (4)
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These wavenumbers can be separated into two groups. Each group consists of four waves. The first
group describes backward waves associated with a semi-infinite shell (�Noxo0), excited at the edge at
x ¼ 0, which includes the roots of dio0, ri ¼ 0 and ri40. The second group describes forward waves
associated with a semi-infinite shell (0oxoN) excited at the edge at x ¼ 0, which includes the roots of di40,
ri ¼ 0 and rio0.

When li is real or pure imaginary, one obtains a propagating wave or an evanescent near-field wave,
respectively. If li is complex in conjugate pairs, one obtains an attenuated standing wave, which means that
the wave amplitudes decay in one direction but the waves propagate in both directions.

Substitution of the roots of the characteristic equation back into Eq. (3) and elimination of one variable by
dividing the equation by Wns can obtain the characteristic vectors

Fns ¼
Uns

W ns

¼
L13L22 � L23L12

L12L21 � L11L22
,

Cns ¼
Vns

W ns

¼
L23L11 � L13L12

L12L21 � L11L22
.

The characteristic vectors denote the propagating nature of a particular wave.
Assume that the shell is excited by a harmonic line force F, acting at x ¼ 0. The external force can be

expressed as

F ðy; tÞ ¼ F 0 cosðnyÞdð0Þ expðiotÞ. (5)

Because of the symmetry of the shell and load, one can only consider the semi-infinite shell at the region
xX0. Four different waves will propagate along the positive direction, therefore for certain circumferential
mode, four unknown coefficients Wns exist in the system equation.

At any cross-section of the shell, there will exist four forces in the axial direction, which are axial force Nx,
bending moment Mx, transverse shear force Qx and torsional shear force Nxy. These forces for a particular
circumferential mode n can easily be derived from the exact Flügge shell equations as [15]

Nx ¼ Nxn cosðnyÞ ¼
D

R

P4
s¼1

½Fnsls þ mnCns þ m� Kl2s �W ns cosðnyÞ

Mx ¼Mxn cosðnyÞ ¼ DK
P4
s¼1

½l2s � mn2 � Fnsls � mnCns�W ns cosðnyÞ

Qx ¼ Qxn cosðnyÞ ¼
D

R
K
P4
s¼1

½ðl3s � mn2ls � Fnsl
2
s � mnCnslsÞ

�ð1� mÞð2n2ls þ 0:5n2Fns þ 1:5nCnslsÞ�W ns cosðnyÞ

Nxy ¼ Nxyn sinðnyÞ ¼
D

R

ð1� mÞ
2

P4
s¼1

½�nFns þ ð1þ 3KÞCnsls þ 3knls�W ns sinðnyÞ

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(6)

where D is tensional rigid, D ¼ Eh/(1�m2).
According to the symmetry, four boundary conditions at cross-section x ¼ 0 can be given as

u ¼ 0

qw=qx ¼ 0

Nxy ¼ 0

Qx ¼ �F=2

9>>>>=
>>>>;
. (7)

Therefore, the four coefficients can be derived and the vibration of the uncracked cylindrical shell can be
determined.
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3. Vibration of cracked cylindrical shell

3.1. Crack model of cylindrical shell

Assume there exists a circumferential surface crack with uniform depth of a in an infinite cylindrical shell,
the crack running through the y direction. To avoid nonlinear, it is assumed that the surface crack is always
open. The distance between the cross-section of crack and the cross-section of the line force is c. One can
isolate a longitudinal element of unit width from the shell, as shown in Fig. 2.

The surface crack in the shell can be modeled as a distributed line spring [17]. The presence of the crack in
the shell will cause the local flexibility. The flexibility of the spring is a function of the local dimensions and the
elastic properties of the cracked region. The local flexibility in the shell will result in the discontinuity of the
generalized displacement at the both sides of crack’s section, then the local deformation at the cracked region
can be identified according to the local compliance [3]

dR
i � dL

i ¼ CijPi, (8)

where di
L and di

R are the generalized displacement to the left and to the right of the cracked section of the
shell, respectively. Cij and Pi denote the local compliance and the generalized force, respectively.

The Paris equation gives the generalized displacement Ui as a function of the strain energy release rate J

Ui ¼
q
qPi

Z a

0

J da. (9)

Therefore, the compliance can be expressed as

Cij ¼
qUi

qPj

¼
q2

qPiqPj

Z a

0

J da. (10)

In addition, expressions for the strain energy release ratio can be directly expressed as function of the stress
intensity factor [18]

J ¼
1

E0

X4
n¼1

K In

 !2

þ
X4
n¼1

K IIn

 !2

þ k
X4
n¼1

K IIIn

 !2
2
4

3
5, (11)

where KIn, KIIn, KIIIn are the stress intensity factor for modes of I, II and III, respectively, E0 ¼ E for plane
stress, E0 ¼ E/(1�m2) for plane strain, k ¼ 1+m.

The stress intensity factors of different modes can be tabulated as shown in Table 1 [18].
By substituting the stress intensity factors tabulated in Table 1 into Eq. (11) and differentiating twice with

respect to Pi and Pj, one can obtain the local compliance pertinent to different internal force.
Fig. 2. Geometry of an element of cracked shell.
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Table 1

Stress intensity factor [17]

Nx Mx Qx Nxy

KIn F 1Nx

ffiffiffiffiffiffi
pa
p

=h 6F2Mx

ffiffiffiffiffiffi
pa
p

=h2 0 0

KIIn 0 0 1:5F3Qxð1� 0:5ā2Þ
ffiffiffiffiffiffi
pa
p

=h 0

KIIIn 0 0 0 F4Nxy
ffiffiffiffiffiffi
pa
p

=h

where Fn are the correction functions, which are dimensionless function of the crack depth ratio, and are given by [17].

F1 ¼ F4½0:752þ 1:287aþ 0:37ð1� sin aÞ3�= cos a,

F2 ¼ F4½0:923þ 0:199ð1� sin aÞ4�= cos a,

F3 ¼ ð1:122� 0:561āþ 0:085ā2 þ 0:18ā3Þ=
ffiffiffiffiffiffiffiffiffiffiffi
1� ā
p

,

F4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan a=a

p
,

ā ¼ a=h; a ¼ pā=2.
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When Pj ¼ Pi ¼ Nx, the tensile component of the compliance matrix with respect to Nx can be obtained as

C11 ¼ 2p=E0
Z a

0

F 2
1a=h2 da. (12)

Similarly, the compliance with respect to Mx is

C22 ¼ 72p=E0
Z a

0

F 2
2a=h4 da. (13)

For Qx and Nxy, one can get

C33 ¼ 4:5p=E0
Z a

0

F 2
3ð1� 0:5ā2Þ

2a=h2 da, (14)

C44 ¼ 2pk=E0
Z a

0

F2
4a=h2 da. (15)

Considering the coupling of longitudinal, bending and transverse shear displacement, for Pj 6¼Pi, we have

C12 ¼ 12p=E0
Z a

0

F1F2a=h3 da,

C21 ¼ C12; C13 ¼ C14 ¼ C24 ¼ C34 ¼ 0,

C31 ¼ C13; C41 ¼ C14; C42 ¼ C24; C43 ¼ C34. ð16Þ

Thus, the local compliance matrix can be obtained, which is a 4� 4-dimensional matrix. In Fig. 3, the
diagonal elements Cii of the local compliance matrix with different crack depth are plotted together. It can be
seen from the figure that the local compliances increase with increasing crack relative depth a/h. In addition,
the compliance C22 with respect to bending moment is much larger than any others. It denotes that the local
compliance with respect to bending moment in the shell is dominant in the local compliance matrix, which is
consistent with the results obtained by Gounaris and Dimarogonas [3] in the cracked beam structures.

3.2. Wave motion in the cracked cylindrical shell

When the harmonic line force F is acted on the shell at cross-section of x ¼ 0 and the crack is located at
cross-section of x ¼ c, the infinite shell can be divided into three regions a–c: the semi-infinite region of xp0,
finite region of 0pxpc and the semi-infinite region of xXc. From the origin, four waves will propagate along
the negative direction and other four waves along the positive direction. When the forward waves incident on
the discontinuity of the crack, there will exist four transmitted waves and four reflected waves. Theoretically,
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Fig. 3. Local flexibility versus crack’s depth.
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the incident waves of mode order n will generate only waves with an identical mode order when they meet the
discontinuity of the crack. However, the boundary conditions at the cross-section of discontinuity will be
satisfied by the inclusion of near fields due to waves below cut-on as well as propagating waves [16].
Consequently, when the forward waves incident on the discontinuity of the crack, there will exist four
transmitted waves and four reflected waves with the same mode order. Thus, under the excitation of the
harmonic line force, there are four waves of unknown coefficients in the region of xp0, eight unknown waves
in the region of 0pxpc and four unknown waves in the region of xXc.

In the semi-infinite region of xp0, for specified circumferential modal number n, the axial displacement ua

can be expressed as

ua ¼
X4
s¼1

FnsW ns expðiknsxþ iotÞ cosðnyÞ, (17)

where the subscript a denotes the regions a(xp0), the characteristic vectors Fns and axial wavenumber kns can
be obtained from Section 2, only the four coefficients Wni (i ¼ 1,2,3,4) are unknown.

In the finite region of 0oxoc, the response may be expressed in the superposition of eight possible wave,
therefore the axial displacement ub can be expressed as

ub ¼
X4
s¼1

FnsW nðsþ4Þ expð�iknsxþ iotÞ cosðnyÞ

þ
X8
s¼5

Fnðs�4ÞW nðsþ4Þ exp½iknðs�4Þðx� cÞ þ iot� cosðnyÞ, ð18Þ

where the subscript b denotes the finite regions b(0oxoc) and eight coefficients Wni (i ¼ 5,6,7,y,12) are
unknown.

For the semi-infinite region c(xXc), four waves with unknown amplitudes will propagate along the positive
direction. The axial displacement is

uc ¼
X4
s¼1

FnsW nðsþ12Þ exp½�iknsðx� cÞ þ iot� cosðnyÞ, (19)

where exist four unknown coefficients Wni (i ¼ 13,14,15,16).
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Similar expressions can be written for the radial and circumferential components of displacement in region
a, b and c. The expressions of the radial and circumferential displacements also contain the sixteen unknown
coefficients Wni (i ¼ 1,2,3,y,16). Consequently, the internal forces, axial force Nx, bending moment Mx,
transverse shear force Qx and torsional shear force Nxy in any cross-section of the cracked shell can be
expressed by using the sixteen unknown coefficients.

In order to solve these 16 unknown wave coefficients, 16 boundary conditions are required.
At the cross-section of x ¼ 0, the continuous conditions of internal forces are

NR
x ¼ NL

x ; MR
x ¼ML

x ; NR
xy ¼ NL

xy; QR
x ¼ QL

x þ F , (20)

where superscripts R and L represent the right side and left side of the cross-section, respectively.
The axial, tangential, radial and angular displacements are continuous, respectively, at the cross-section of

x ¼ 0, so

uR ¼ uL; vR ¼ vL; wR ¼ wL; qwR=qx ¼ qwL=qx. (21)

The detail expression of the radial displacement’s continuous condition, for example, can be written as

X4
s¼1

FnsW nðsþ4Þ expð�iknsxþ iotÞ þ
X8
s¼5

Fnðs�4ÞW nðsþ4Þ exp½iknðs�4Þðx� cÞ þ iot�

�����
x¼0

¼
X4
s¼1

W ns expðiknsxþ iotÞ cosðnyÞ

�����
x¼0

. ð22Þ

At the cross-section x ¼ c of the crack, the continuity of axial force, angular bending moment, transverse
shear, and torsional shear should be satisfied, so

NR
x ¼ NL

x ; MR
x ¼ML

x ; QR
x ¼ QL

x ; NR
xy ¼ NL

xy. (23)

The crack induces the discontinuity of the displacement at x ¼ c, and the local compliance matrix is
deduced above. So the discontinuity at the both sides of the crack can be written as

uR � uL

qwR=qx� qwL=qx

wR � wL

vR � vL

2
6664

3
7775 ¼ ½C4�4�

Nx

Mx

Qx

Nxy

2
6664

3
7775. (24)

From the above analysis, it is clear that at the cross-sections of x ¼ 0 and c there are eight boundary
conditions, respectively. Therefore, by substituting the expressions of displacements and internal forces into
the sixteen equations, the unknown wave coefficients Wni (i ¼ 1,2,3,y,16) will be solved. Consequently, the
wave motion in the cracked shell structure can be determined. It should be noted that the real wavenumber
wave as well as complex wavenumber wave are included when solving the system equations using the
boundary conditions at x ¼ 0 and c. For the case of circumferential mode n ¼ 0, the motion in the u, w

direction is uncoupled with the motion in the v direction, there exit twelve possible waves in axial direction and
six boundary conditions can be obtained at the cross-sections of x ¼ 0 and c, respectively.
4. Vibrational power flow in cylindrical shell

When the shell structure is excited by harmonic external force, the vibrational power flow input by the
external force propagates along the wall of the shell continuously. When the external force F and the velocity
V are harmonic at a point, the time averaged power flow is [12]

Pin ¼
1

2
RefFV�g, (25)

where Re(*) expresses the real part of a complex value, an asterisk denotes the complex conjugate.
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For the uncracked or cracked cylindrical shell, when a harmonic external force F ðy; tÞ ¼ F 0 cosðnyÞ
dð0Þ expðiotÞ is applied to the shell wall along radial direction, the radial displacement of the shell wall at
x ¼ 0 can be obtained from above analysis. Then the input power flow from this driving force can be
written as

Pin ¼
1

2

Z 2p

0

RefioF0 cosðnyÞW �ð0Þðcos nyÞgRdy ¼
pR

2�n

RefioF0W
�ð0Þg, (26)

where en ¼ 1/2 for n ¼ 0 and en ¼ 1 for n40.
The non-dimensional power flow is defined as

P0in ¼
Pin

F 2
0p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rER2ð1� m2Þ

q
. (27)

Fuller [19] has demonstrated that the input power flow of an infinite cylindrical shell excited by a radial line
force can be calculated by using the method of residues, while for the cracked infinite shell, the input power
flow cannot be formulated by using the method of residues. In this research the input power flows of both
uncracked shell and cracked shell are determined from the motion equation and the boundary conditions as
shown in above sections.

Along with the power input into the shell, power flow will also be transmitted along the shell axial direction.
The uncracked and cracked shell’s displacements in the x, y and r directions have bend derived in Sections 2
and 3, respectively, therefore the four internal forces, axial force Nx, bending moment Mx, transverse shear
force Qx and torsional shear force Nxy in any cross-section of the uncracked and cracked shell can be obtained.
Meanwhile, corresponding to the four internal forces, the generalized velocities, iou, ioqo/qx, iow and iov

can be obtained, respectively. As a results, at any cross-section the vibrational power flow transmitted by these
forces are respectively expressed as

PNx
¼

1

2

Z 2p

0

RefioNxn cosðnyÞU�xnðcos nyÞgRdy ¼
pR

2�n

RefioNxnU�xng,

PMx
¼

1

2

Z 2p

0

RefioMxn cosðnyÞðqW �
xnðxÞ=qxÞðcos nyÞgRdy ¼

pR

2�n

RefioMxnðqW �
xnðxÞ=qxÞg

PQx
¼

1

2

Z 2p

0

RefioQxn cosðnyÞW �
xnðxÞðcos nyÞgRdy ¼

pR

2�n

RefioQxnW �
xng,

PNxy ¼
1

2

Z 2p

0

RefioNxyn cosðnyÞV�xnðxÞðcos nyÞgRdy ¼
pR

2�n

RefioNxynV�xng.

The total transmitted power flow in the shell is

Ptr ¼ PNx
þ PMx

þ PQx
þ PNxy . (28)

Therefore, the input power flow and transmitted power flow in the uncracked and cracked shell can be
derived from above analysis. The change of the power flow in the cracked cylindrical shell may be related to
the position and the depth of the crack. The relationship between the crack parameters and the power flow
characteristics can be revealed via the research on the power flow characteristics of different crack parameters.
5. Numerical results and discussions

In this research, an undamped infinite thin-walled cylindrical shell is considered. The parameters of the shell
are shown as follows, modulus of elasticity E ¼ 1.92� 1011 Pa, Poisson’s ratio m ¼ 0.3, mass density
r ¼ 7800 kg/m3, a thickness to radius ratio of h/R ¼ 0.05. The unit harmonic line force F is located at x ¼ 0.
A circumferential surface crack with uniform depth of a is located at x ¼ c.
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5.1. Input power flow of uncracked and cracked shell

The dispersion characteristics including the complex wavenumbers of the cylindrical shell were discussed in
detail by Fuller [16], and the power flow characteristics in the intact shell together with the measurement of
power flow in the shell have been discussed by many researchers [20–24]. The uncracked shell’s input power
flow is calculated to compare with that of the cracked shell in this paper.

Fig. 4 shows the non-dimensional input power flow of uncracked and cracked shell under different
circumferential modal number (n ¼ 0,1,2 and 5 in Figs. 4(a)–(d), respectively), in which the solid line
represents the non-dimensional input power flow of uncracked shell and the dashed line represents the cracked
shell’s non-dimensional input power flow with the crack parameters of a/h ¼ 0.5 and c/R ¼ 1. For the
uncracked cylindrical shell, there exists cut off frequency, below which there is no energy input into the shell
structure, and the cut off frequency increases with increasing circumferential modal number. For example, for
the circumferential mode of n ¼ 0 there is no cut off frequency, while for n ¼ 2 and 5 circumferential modes
the non-dimensional cut off frequencies are near 0.05 and 0.3, respectively. For the n ¼ 0 circumferential
mode, the non-dimensional input power flow curve has one peak near the ring frequency (O ¼ 1) of the shell.
However, for any circumferential mode of n40, the non-dimensional input power flow curve has two peaks
over the frequency range. When the circumferential mode is small (n ¼ 1,2), the first peak is near the ring
frequency (O ¼ 1) of the shell, as can be seen from Figs. 4(b) and (c). For the high circumferential modes, for
example, n ¼ 5, however, the first peak is not near the ring frequency but near the cut off frequency. For the
n40 circumferential modes, the second peak is associated with the cutting on of the longitudinal type shell
wave [19]. For example, for the circumferential modes n ¼ 2, the second peak is near O ¼ 2.2, which is
corresponding to the cutting on frequency of the second propagating wave.

For the cracked shell, there still exist cut off frequencies for different circumferential modes, and the cut-off
frequency of cracked shell is identical with that of uncracked shell for the same circumferential mode. In
addition, the non-dimensional input power flow curve of cracked shell also have obvious peaks at corresponding
frequencies, as can be seen from Fig. 4. But the presence of the crack changes the input power flow
characteristics observably. It can be found that for different circumferential modes, the non-dimensional input
power flow of cracked shell fluctuates around that of uncracked shell with the increase of the driving frequency,
though the fluctuation is not very evident at low frequencies. For the low order circumferential modes (n ¼ 0,1
and 2), the peak value near the ring frequency of cracked shell is bigger than that of uncracked shell, and for the
n40 circumferential modes, the value of the second peak of cracked shell is also bigger than that of uncracked
shell. This is because the presence of the crack induces the decrease of the rigidity of the shell.

In the following cases, the circumferential modal number n ¼ 1 will be always chosen. In order to
investigate the influence of crack’s position on the input power flow of the shell, the crack’s relative depth is
kept constant at a/h ¼ 0.3 and the crack’s position is changed, as shown in Fig. 5. From the figure it is clear
that when the relative position c/R increases from 1 to 2, the non-dimensional input power flow curve
fluctuates more and more quickly over the same frequency range. In Fig. 6 the crack’s relative position is kept
constant at c/R ¼ 1 and the crack’s relative depth a/h is changed from 0.1 to 0.5 to investigate the influence of
crack’s depth on the input power flow. The figure shows that the degree of fluctuation increases when the crack
relative depth increases. This is because the increase of the local flexibility induces the increase of response of
the shell.

In order to obtain the crack’s information (position and depth) from the changes of power flow
characteristics in the shell, one can define the ratio of cracked shell’s input power flow to uncracked shell’s
input power flow as the normalized input power flow Rc. The normalized input power flows versus crack
location and depth are shown in three-dimensional plot of Figs. 7 and 8. Because the shell is infinite in length,
the crack’s relative position c/R is just chosen from 0 to 0.5 to demonstrate the relationship between the
crack’s information and the normalized input power flow. The non-dimensional driving frequency in Figs. 7
and 8 is 0.7 and 2, respectively. From the two figures, it is clear that the crack location and crack depth are
both highly related to the normalized input power flow Rc, and the fluctuation of the plots becomes obvious
with increasing of the crack depth. From the comparison between Figs. 7 and 8, it can be found that the
number of the surface’s peaks increases with increasing the driving frequency at the same range of c/R, which
denotes the normalized input power flow are more sensitive to the crack position at higher frequencies.
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Fig. 4. Non-dimensional input power flow of uncracked shell (solid line) and cracked shell (dotted line) crack parameteristics: a/h ¼ 0.5,

c/R ¼ 1.
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5.2. Transmission of power flow in cracked shell

When the force is acting on the shell structure, the energy will propagate along the wall of the shell
continuously. At any cross-section of the shell, the vibrational power flow is transmitted by four internal
forces. For the intact infinite shell, the input power flow is divided two equal parts propagating along positive
and negative directions, respectively. Because the damping is not considered in this paper, the total
transmitted power flow is always the half of the input power flow and independent of the distance. For the



ARTICLE IN PRESS

Fig. 6. Non-dimensional input power flow of uncracked shell and cracked shell (n ¼ 1, c/R ¼ 1).

Fig. 7. Normalized input power flow of cracked shell (n ¼ 1, O ¼ 0.7).

Fig. 5. Non-dimensional input power flow of uncracked shell and cracked shell (n ¼ 1, a/h ¼ 0.3).
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Fig. 8. Normalized input power flow of cracked shell (n ¼ 1, O ¼ 2).

Fig. 9. Ratio of input power flow to transmitted power flow of cracked shell (n ¼ 1, a/h ¼ 0.3).
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cracked shell, the transmitted power flows along both sides of the origin are not equal due to the presence of
the crack, though the sum of the transmitted power flows along two directions is equal to the input power
flow. The calculation results also show that the total transmitted power flow of cracked shell along one
direction is independent of distance due to the undamped shell.

Figs. 9 and 10 show the ratio of transmitted power flow along positive direction to input power flow Ptr/Pin

with different crack parameters. The dotted straight lines (Ptr/Pin ¼ 1/2) in the two figures represent the
uncracked shell’s transmitted power flow ratio. The relative crack depth is kept constant at a/h ¼ 0.3 in Fig. 9
while the relative crack position is kept constant at c/R ¼ 1 in Fig. 10. It can be seen that the transmitted
power flow ratio curves of cracked shell fluctuate around the straight line Ptr/Pin ¼ 1/2 in the two figures, and
the fluctuation becomes apparent at higher frequencies. It also can be seen that the characteristics of the
transmitted power flow ratio curves are similar to those of the input power flow curves when increasing c/R
and a/h, respectively.
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Fig. 10. Ratio of input power flow to transmitted power flow of cracked shell (n ¼ 1, c/R ¼ 1).

Fig. 11. Contours of normalized input power flow at different non-dimensional driving frequencies: (a) O ¼ 1.2; (b) O ¼ 2.5.
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5.3. Crack detection procedure using power flow

Based on above analysis, it can be found that the existence of the crack causes the change of power flow
characteristics in the shell. Both the crack location and depth have influences on the input and transmitted
power flow. It denotes that certain input power flow or transmitted power flow could correspond to different
combination of crack’s location and depth. The contour lines of the normalized input power flow could be
plotted in one figure from different combinations of crack location and depth at some specified frequencies via
the analytical solutions above, the figure having the crack location and depth as its axes. Figs. 11(a) and (b)
show the contour lines of normalized input power flow of cracked shell with non-dimensional driving
frequency of 1.2 and 2.5, respectively. In order to be clear and readable, only parts of the contour lines are
plotted and labeled. It can be found that the location and depth corresponding to any point on the curves
would become the possible crack location and depth. A crack should and must belong to one contour line for
each driving frequency.

For some existent crack in the shell structure, the crack depth and location are both unknown. But the input
power flow of the cracked shell at specified driving frequencies may be measured first, and then the normalized
input power flow at two different driving frequencies can be obtained directly as the input. Therefore, contour
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lines corresponding to the obtained normalized input power flow at two driving frequencies can be plotted
together, and the intersection point would indicate the location and depth of the crack. When more than one
intersection point is obtained from the merged figure, the contour line from another driving frequency could
be added into the figure and the intersection point of the three contour lines could be used to uniquely obtain
the final point, which would indicate the crack location and depth. Usually, contour lines from three different
frequencies will be sufficient to identify the crack.

In order to explain the crack detection procedure clearly, two examples are presented in this paper. In the
first case, it is assumed that a cylindrical shell with relative crack depth a/h ¼ 0.4 and relative crack position
c/R ¼ 0.15 is considered. In this case, from the numerical results in Section 5.1 the normalized input power
flow for the O ¼ 0.7 non-dimensional frequency is 1.04 and is 0.71 for the O ¼ 1.2 non-dimensional frequency.
According to these results, the solid contour line with the value of 1.04 from the O ¼ 0.7 driving frequency can
be plotted in Fig. 12. The dashed contour line with the value of 0.71 from the non-dimensional driving
frequency of 1.2 is also plotted in the same figure. It can be found from the figure that there is only one
intersection point, the abscissa and the ordinate of which respectively represent that the relative crack depth is
0.4 and the relative crack position is 0.15. Therefore normalized input power flows from only two driving
frequencies are sufficient for crack detection in this case.

In the second case, it is assumed that when non-dimensional frequency is 0.7, the normalized input power flow
is 1.04 while the normalized input power flow is 1.16 with the non-dimensional driving frequency of 1.2 for
certain unknown crack. Accordingly, the solid contour line with the value of 1.04 at the non-dimensional driving
frequency of 1.04 can be plotted in Fig. 13, the dashed contour line with the value of 1.16 at driving frequency of
1.2 being plotted in the same figure. From this figure, it can be seen that there are two intersection points for
these two contours, which are labeled ‘A’ and ‘B’, respectively. In order to uniquely decide the final point, the
contour line at another frequency will be used. Considering the normalized input power flow of the cracked shell
is 0.89 at the non-dimensional driving frequency of 1.5, the dotted contour with the value of 0.89 at 1.5 non-
dimensional driving frequency can be used to uniquely obtain the final point, as can be seen from Fig. 14. The
three contour lines intersect at point ‘A’, which indicates that the relative depth a/h is 0.2 and the relative crack
position c/R is 0.35 in this case. So the crack’s depth and location may be identified according to the input power
flow contour diagrams. In this research the shell is infinite; therefore, the relative distance is chosen only from 0
to 0.5 to give a demonstration of identification procedure. For the finite shell, the crack position in the contour
diagram will be constructed from one end to the other end to detect the crack. Besides the input power flow, the
contour lines of transmitted power flow may be also constructed to identify the crack in the shell.

From the above examples, it can be found that the power flow characteristics are not very sensitive to very
small cracks (a/ho0.1). Therefore, the application of the method may be suit for the cases of relative crack
Fig. 12. Crack identification by contours of normalized input power flow from two different non-dimensional driving frequencies:

O ¼ 0.7, Rc ¼ 1.04 (solid line); O ¼ 1.2, Rc ¼ 0.71 (dashed line), the intersection point denotes that c/R ¼ 0.15, a/h ¼ 0.4.
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Fig. 13. Contours of normalized input power flow from two different non-dimensional driving frequencies: O ¼ 0.7, Rc ¼ 1.04 (solid line);

O ¼ 1.2, Rc ¼ 1.16 (dashed line).

Fig. 14. Crack identification by contours of normalized input power flow from three different non-dimensional driving frequencies:

O ¼ 0.7, Rc ¼ 1.04 (solid line); O ¼ 1.2, Rc ¼ 1.16 (dashed line) O ¼ 1.5, Rc ¼ 0.89 (dotted line), point ‘A’ denotes that c/R ¼ 0.35,

a/h ¼ 0.2.
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depth a/hX0.1. However, like most vibration-based damage detection methods, the method proposed in this
paper, as a global crack detection method, provides a simple and useful tool to detect a crack without the
access of the whole structure. In addition, just the input powers in the structures are required to be measured,
therefore one impendence head placed on a structure could give the values of input power flows at different
frequencies, unlike the methods based on the mode shape (curvature mode shape, strain mode shape, etc.),
which always need to measure responses at a large number of locations and pose practical difficulties due to
limitations in the numbers of sensors and the capability of accurate measurement.
6. Conclusions

This paper has presented an approach to analyze the wave and vibrational power flow characteristics in
cracked cylindrical shell structures. The case of an infinite thin cylindrical shell with a circumferential surface
crack was considered. By modeling the crack with line spring, the local compliance matrix due to the presence
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of the crack was deduced from fracture mechanics. Changes in input and transmitted power flows with respect
to the crack location and crack depth were obtained. The results revealed that the vibrational power flow of
cracked cylindrical shell is quite related to the crack’s characteristic parameters. Contour plots of normalized
input power flow were used to identify the crack. The numerical result showed that the proposed method could
successfully identify the crack location and depth.

It should be pointed out that in this study the external force is assumed to be a harmonic line-distributed
force for convenience, actually the external force of other types can also be acted on the shell, for example, the
radial point force, which can be obtained from the transformation of the harmonic line-distributed force and
the measurement of the input and transmitted power flow excited by which has been researched by Ming [23].
Therefore, this new method can be applied in principle to the case of other force excitations. The research in
this paper provides an alternative method to identify the crack in cylindrical shell structures by measuring the
vibrational power flow. Further work will be done to investigate the cracked finite cylindrical shell’s input and
transmitted power flow characteristics and some experiments will be implemented to verify the feasibility of
the approach.
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